ВЫСШАЯ МАТЕМАТИКА

Главная >> Лекции по высшей математике >> Линейная алгебра >> Обратная матрица

Обратная матрица

Способы нахождения обратной матрицы, нахождение обратной матрицы on-line. Рассмотрим квадратную матрицу

 .

Обозначим Δ =det A.

Квадратная матрица А называется невырожденной, или неособенной, если ее определитель отличен от нуля, и вырожденной, или особенной, если Δ = 0.

Квадратная матрица В есть обратная матрица для квадратной матрицы А того же порядка, если их произведение А В = В А = Е, где Е - единичная матрица того же порядка, что и матрицы А и В.

Теорема. Для того, чтобы матрица А имела обратную матрицу, необходимо и достаточно, чтобы ее определитель был отличен от нуля.

Обратная матрица матрице А, обозначается через А-1, так что В = А-1 и вычисляется по формуле

,                                               (1)

где А i j - алгебраические дополнения элементов a i j матрицы A..

Вычисление A-1 по формуле (1) для матриц высокого порядка очень трудоемко, поэтому на практике бывает удобно находить A-1 с помощью метода элементарных преобразований (ЭП). Любую неособенную матрицу А путем ЭП только столбцов (или только строк) можно привести к единичной матрице Е. Если совершенные над матрицей А ЭП в том же порядке применить к единичной матрице Е, то в результате получится обратная матрица. Удобно совершать ЭП над матрицами А и Е одновременно, записывая обе матрицы рядом через черту. Отметим еще раз, что при отыскании канонического вида матрицы с целью нахождения ранга матрицы можно пользоваться преобразованиями строк и столбцов. Если нужно найти обратную матрицу, в процессе преобразований следует использовать только строки или только столбцы.

Пример 2.10. Для матрицы  найти A-1.

Решение. Находим сначала детерминант матрицы А
  значит, обратная матрица существует и мы ее можем найти по формуле:  , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы.                  

                   

                  

                 

 откуда   .

Пример 2.11. Методом элементарных преобразований найти A-1 для матрицы: А= .

Решение. Приписываем к исходной матрице справа единичную матрицу того же порядка: . С помощью элементарных преобразований столбцов приведем левую “половину” к единичной, совершая одновременно точно такие преобразования над правой матрицей.
Для этого поменяем местами первый и второй столбцы:
~. К третьему столбцу прибавим первый, а ко второму - первый, умноженный на -2: . Из первого столбца вычтем удвоенный второй, а из третьего - умноженный на 6 второй; . Прибавим третий столбец к первому и второму: . Умножим последний столбец на -1: . Полученная справа от вертикальной черты квадратная матрица является обратной матрицей к данной матрице А. Итак,
        .

 

Автор: Степанов Владимир
О авторе

 

Введите свою матрицу 3х3, нажмите кнопку ok и получите обратную матрицу

 

 

МЕНЮ

Высшая математика Решение контрольных
Оплата контрольных
Вопросы по Skype
Редактор формул
Лекции
Видео-лекции
Учебники on-line
Скачать учебники
Решатели задач
О математике
Карта сайта

 

Каталог-Молдова - Ranker, Statistics

Copyright © 2004-2013