ВЫСШАЯ МАТЕМАТИКА

Главная >> Лекции >> Линейная алгебра >> Матрицы

4.1.Матрицы. Операции над матрицами

Прямоугольной матрицей размера mxn называется совокупность mxn чисел, расположенных в виде прямоугольной таблицы, содержащей m строк и n столбцов. Мы будем записывать ее в виде

                   матрицы и определители                                             (4.1)

или сокращенно в виде A = (ai j) (i =; j = ), числа ai j, называются ее элементами; первый индекс указывает на номер строки, второй - на номер столбца. A = (ai j) и B = (bi j) одинакового размера называются равными, если попарно равны их элементы, стоящие на одинаковых местах, то есть A = B, если ai j = bi j.

Матрица, состоящая из одной строки или одного столбца, называется соответственно вектор-строкой или вектор-столбцом. Вектор-столбцы и вектор-строки называют просто векторами.

Матрица, состоящая из одного числа, отождествляется с этим числом. A размера mxn, все элементы которой равны нулю, называются нулевой и обозначается через 0. Элементы с одинаковыми индексами называют элементами главной диагонали. Если число строк равно числу столбцов, то есть m = n, то матрицу называют квадратной порядка n. Квадратные матрицы, у которых отличны от нуля лишь элементы главной диагонали, называются диагональными и записываются так:

.

Если все элементы ai i диагонали равны 1, то она называется единичной и обозначается буквой Е:

                                                                          .

Квадратная матрица называется треугольной, если все элементы, стоящие выше (или ниже) главной диагонали, равны нулю. Транспонированием называется такое преобразование , при котором строки и столбцы меняются местами с сохранением их номеров. Обозначается транспонирование значком Т наверху.

Если в (4.1) переставим строки со столбцами, то получим

,

которая будет транспонированной по отношению к А. В частности, при транспонировании вектора-столбца получается вектор-строка и наоборот.

Произведением А на число b называется матрица, элементы которой получаются из соответствующих элементов А умножением на число b: b A = (b ai j).

Суммой А = (ai j) и B = (bi j) одного размера называется C = (ci j) того же размера, элементы которой определяются по формуле ci j = ai j + bi j.

Произведение АВ определяется в предположении, что число столбцов А равно числу строк В.

Произведением AB, где А = (ai j) и B = (bj k), где i =, j=, k=, заданных в определенном порядке АВ, называется С = (c i k), элементы которой определяются по следующему правилу:

c i k = ai 1 b1 k + ai 2 b2 k +... + ai m bm k = ai s bs k.                    (4.2)

Иначе говоря, элемент произведения AB определяются следующим образом: элемент i-й строки и k-го столбца С равен сумме произведений элементов i-й строки А на соответствующие элементы k-го столбца В.

Пример 2.1. Найти произведение AB  и .

Решение. Имеем: А размера 2x3, В размера 3x3, тогда произведение АВ = С существует и элементы С равны


с11 = 1×1 +2×2 + 1×3 = 8,          с21 = 3×1 + 1×2 + 0×3 = 5,         с12 = 1×2 + 2×0 + 1×5 = 7,

с22 =3×2 + 1×0 + 0×5 = 6,          с13 = 1×3 + 2×1 + 1×4 = 9,         с23 = 3×3 + 1×1 + 0×4 = 10.

, а произведение BA не существует.

Пример 2.2. В таблице указано количество единиц продукции, отгружаемой ежедневно на молокозаводах 1 и 2 в магазины М1, М2 и М3, причем доставка единицы продукции с каждого молокозавода в магазин М1 стоит 50 ден. ед., в магазин М2 - 70, а в М3 - 130 ден. ед. Подсчитать ежедневные транспортные расходы каждого завода.

Молокозавод

Магазин

 

М1

М2

М3

1

20

35

10

2

15

27

8

Решение. Обозначим через А матрицу, данную нам в условии, а через
В - матрицу, характеризующую стоимость доставки единицы продукции в магазины, т.е.,

,

Тогда матрица затрат на перевозки будет иметь вид:

.

Итак, первый завод ежедневно тратит на перевозки 4750 ден. ед., второй - 3680 ден.ед.

Пример 2.3. Швейное предприятие производит зимние пальто, демисезонные пальто и плащи. Плановый выпуск за декаду характеризуется вектором X = (10, 15, 23). Используются ткани четырех типов Т1, Т2, Т3, Т4. В таблице приведены нормы расхода ткани (в метрах) на каждое изделие. Вектор С = (40, 35, 24, 16) задает стоимость метра ткани каждого типа, а вектор P = (5, 3, 2, 2) - стоимость перевозки метра ткани каждого вида.

Изделие

Расход ткани

 

Т1

Т2

Т3

Т4

Зимнее пальто

5

1

0

3

Демисезонное пальто

3

2

0

2

Плащ

0

0

4

3

1. Сколько метров ткани каждого типа потребуется для выполнения плана ?

2. Найти стоимость ткани, расходуемой на пошив изделия каждого вида.

3. Определить стоимость всей ткани, необходимой для выполнения плана.

4. Подсчитать стоимость всей ткани с учетом ее транспортировки.

Решение. Обозначим через А матрицу, данную нам в условии, т. е.,

,

тогда для нахождения количества метров ткани, необходимой для выполнения плана, нужно вектор X умножить на матрицу А:

Стоимость ткани, расходуемой на пошив изделия каждого вида, найдем, перемножив матрицу А и вектор CT:

.

Стоимость всей ткани, необходимой для выполнения плана, определится по формуле:

Наконец, с учетом транспортных расходов вся сумма будет равна стоимости ткани, т. е. 9472 ден. ед., плюс величина

X А P T = .

Итак, X А C T + X А P T = 9472 + 1037 = 10509 (ден. ед).

МЕНЮ

Высшая математика Решение контрольных
Оплата контрольных
Вопросы по Skype
Редактор формул
Лекции
Видео-лекции
Учебники on-line
Скачать учебники
Решатели задач
О математике
Карта сайта

Каталог-Молдова - Ranker, Statistics

Copyright © 2004-2015