ВЫСШАЯ МАТЕМАТИКА

Главная >> Лекции >> Математический анализ >> Предел последовательности и функции

Предел последовательности и функции. Теоремы о пределах

Определение пределов последовательности и функции, свойства пределов, первый и второй замечательные пределы, примеры, виджет для вычисления пределов on-line.

Постоянное число а называется пределом последовательности {xn}, если для любого сколь угодно малого положительного числа ε > 0 существует номер N, что все значения xn, у которых n>N, удовлетворяют неравенству

                     |xn - a| < ε.                  (6.1)

Записывают это следующим образом:  или xn a.

Неравенство (6.1) равносильно двойному неравенству

                                              a- ε < xn < a + ε,                                          (6.2)

которое означает, что точки x n, начиная с некоторого номера n>N, лежат внутри интервала (a-ε, a+ε), т.е. попадают в какую угодно малую ε-окрестность точки а.

Последовательность, имеющая предел, называется сходящейся, в противном случае - расходящейся.

Понятие предел функции является обобщением понятия предел последовательности, так как предел последовательности можно рассматривать как предел функции xn = f(n) целочисленного аргумента n.

Пусть дана функция f(x) и пусть a - предельная точка области определения этой функции D(f), т.е. такая точка, любая окрестность которой содержит точки множества D(f), отличные от a. Точка a может принадлежать множеству D(f), а может и не принадлежать ему.

Определение 1. Постоянное число А называется предел функции f(x) при x→a, если для всякой последовательности {xn} значений аргумента, стремящейся к а, соответствующие им последовательности {f(xn)} имеют один и тот же предел А.

Это определение называют определением предел функции по Гейне, или “на языке последовательностей”.

Определение 2. Постоянное число А называется предел функции f(x) при x→a, если, задав произвольное как угодно малое положительное число ε, можно найти такое δ >0 (зависящее от ε), что для всех x, лежащих в ε-окрестности числа а, т.е. для x, удовлетворяющих неравенству
0 <
x-a < ε, значения функции f(x) будут лежать в ε-окрестности числа А, т.е. |f(x)-A| < ε.

Это определение называют определением предел функции по Коши, или “на языке ε - δ“.

Определения 1 и 2 равносильны. Если функция f(x) при x → a имеет предел, равный А, это записывается в виде

                                                                               .                                                                 (6.3)

В том случае, если последовательность {f(xn)} неограниченно возрастает (или убывает) при любом способе приближения x к своему пределу а, то будем говорить, что функция f(x) имеет бесконечный предел, и записывать это в виде:

Переменная величина (т.е. последовательность или функция), предел которой равен нулю, называется бесконечно малой величиной.

Переменная величина, предел которой равен бесконечности, называется бесконечно большой величиной.

Чтобы найти предел на практике пользуются следующими теоремами.

Теорема 1. Если существует каждый предел  

                                                (6.4)

                                                          (6.5)

                                                    (6.6)

Замечание. Выражения вида 0/0, ∞/∞, ∞-∞, 0*∞, - являются неопределенными, например, отношение двух бесконечно малых или бесконечно больших величин, и найти предел такого вида носит название “раскрытие неопределенностей”.

Теорема 2.                                                                                    (6.7)

т.е. можно переходить к пределу в основании степени при постоянном показателе, в частности, ;

                                                                                                                       (6.8)

                                                                                                                    (6.9)

Теорема 3.     

                                                                                                                                                                                    (6.10)

                                                                                                                                                                         (6.11)

где e » 2.7 - основание натурального логарифма. Формулы (6.10) и (6.11) носят название первый замечательного предело и второй замечательный предел.

Используются на практике и следствия формулы (6.11):

                                                                                                                                                                 (6.12)

                                                                                                                                                                      (6.13)

                                                                                                                                                                    (6.14)

в частности предел,

                                                                                                 

Eсли x→ a и при этом x > a, то пишут x →a + 0. Если, в частности, a = 0, то вместо символа 0+0 пишут +0. Аналогично если x→a и при этом x<a, то пишут x→a-0. Числа  и  называются соответственно предел справа и предел слева функции f(x) в точке а. Чтобы существовал предел функции f(x) при x→a необходимо и достаточно, чтобы .  Функция f(x) называется непрерывной в точке x0, если предел

                                                                                               .                                                                         (6.15)

Условие (6.15) можно переписать в виде:

,

то есть возможен предельный переход под знаком функции, если она непрерывна в данной точке.

Если равенство (6.15) нарушено, то говорят, что при x = xo функция f(x) имеет разрыв. Рассмотрим функцию y = 1/x. Областью определения этой функции является множество R, кроме x = 0. Точка x = 0 является предельной точкой множества D(f), поскольку в любой ее окрестности, т.е. в любом открытом интервале, содержащем точку 0, есть точки из D(f), но она сама не принадлежит этому множеству. Значение f(xo)= f(0) не определено, поэтому в точке xo = 0 функция имеет разрыв.

Функция f(x) называется непрерывной справа в точке xo, если предел

,

и непрерывной слева в точке xo, если предел

.

Непрерывность функции в точке xo равносильна ее непрерывности в этой точке одновременно и справа и слева.

Для того, чтобы функция была непрерывна в точке xo, например, справа, необходимо, во-первых, чтобы существовал конечный предел , а во-вторых, чтобы этот предел был равен f(xo). Следовательно, если хотя бы одно из этих двух условий не выполняется, то функция будет иметь разрыв.

1. Если предел  существует и не равен f(xo), то говорят, что функция f(x) в точке xo имеет разрыв первого рода, или скачок.

2. Если предел  равен +∞ или -∞ или не существует, то говорят, что в точке xo функция имеет разрыв второго рода.

Например, функция y = ctg x при x → +0 имеет предел, равный +∞, значит, в точке x=0 она имеет разрыв второго рода. Функция y = E(x) (целая часть от x) в точках с целыми абсциссами имеет разрывы первого рода, или скачки.

Функция, непрерывная в каждой точке промежутка [a,b], называется непрерывной в [a,b]. Непрерывная функция изображается сплошной кривой.

Ко второму замечательному пределу приводят многие задачи, связанные с непрерывным ростом какой-либо величины. К таким задачам, например, относятся: рост вклада по закону сложных процентов, рост населения страны, распад радиоактивного вещества, размножение бактерий и т.п.

Рассмотрим пример Я. И. Перельмана, дающий интерпретацию числа e в задаче о сложных процентах. Число e есть предел . В сбербанках процентные деньги присоединяются к основному капиталу ежегодно. Если присоединение совершается чаще, то капитал растет быстрее, так как в образовании процентов участвует большая сумма. Возьмем чисто теоретический, весьма упрощенный пример. Пусть в банк положено 100 ден. ед. из расчета 100 % годовых. Если процентные деньги будут присоединены к основному капиталу лишь по истечении года, то к этому сроку 100 ден. ед. превратятся в 200 ден.ед. Посмотрим теперь, во что превратятся 100 ден. ед., если процентные деньги присоединять к основному капиталу каждые полгода. По истечении полугодия 100 ден. ед. вырастут в 100 × 1,5 = 150, а еще через полгода - в 150 × 1,5 = 225 (ден. ед.). Если присоединение делать каждые 1/3 года, то по истечении года 100 ден. ед. превратятся в 100 × (1 +1/3)3 »237 (ден. ед.). Будем учащать сроки присоединения процентных денег до 0,1 года, до 0,01 года, до 0,001 года и т.д. Тогда из 100 ден. ед. спустя год получится:

                                        100 × (1 +1/10)10 » 259 (ден. ед.),

                                        100 × (1+1/100)100 » 270 (ден. ед.),

                                        100 × (1+1/1000)1000 » 271 (ден. ед.).

При безграничном сокращении сроков присоединения процентов наращенный капитал не растет беспредельно, а приближается к некоторому пределу, равному приблизительно 271. Более чем в 2,71 раз капитал, положенный под 100% годовых, увеличиться не может, даже если бы наросшие проценты присоединялись к капиталу каждую секунду, потому что предел

Пример 3.1. Пользуясь определением предела числовой последовательности, доказать, что последовательность xn =(n-1)/n имеет предел, равный 1.

Решение. Нам надо доказать, что, какое бы ε > 0 мы ни взяли, для него найдется натуральное число N, такое, что для всех n N имеет место неравенство |xn -1| < ε.

Возьмем любое e > 0. Так как ; xn -1 =(n+1)/n - 1= 1/n, то для отыскания N достаточно решить неравенство 1/n<e. Отсюда n>1/e и, следовательно, за N можно принять целую часть от 1/e, N = E(1/e). Мы тем самым доказали, что предел .

Пример 3.2. Найти предел последовательности, заданной общим членом  .

Решение. Применим теорему предел суммы и найдем предел каждого слагаемого. При n ∞ числитель и знаменатель каждого слагаемого стремится к бесконечности, и мы не можем непосредственно применить теорему предел частного. Поэтому сначала преобразуем xn, разделив числитель и знаменатель первого слагаемого на n2, а второго на n. Затем, применяя теорему предел частного и предел суммы, найдем:

.

Пример 3.3. . Найти .

Решение.  .

Здесь мы воспользовались теоремой о пределе степени: предел степени равен степени от предела основания.

Пример 3.4. Найти  ().

Решение. Применять теорему предел разности нельзя, поскольку имеем неопределенность вида ∞-∞ . Преобразуем формулу общего члена:

.

Пример 3.5. Дана функция f(x)=21/x. Доказать, что предел  не существует.

Решение. Воспользуемся определением 1 предела функции через последовательность. Возьмем последовательность { xn }, сходящуюся к 0, т.е.  Покажем, что величина f(xn)= для разных последовательностей ведет себя по-разному. Пусть xn = 1/n. Очевидно, что , тогда предел  Выберем теперь в качестве xn последовательность с общим членом xn = -1/n, также стремящуюся к нулю.  Поэтому предел  не существует.

Пример 3.6. Доказать, что предел  не существует.

Решение. Пусть x1, x2,..., xn,... - последовательность, для которой
. Как ведет себя последовательность {f(xn)} = {sin xn } при различных xn→ ∞

Если xn= pn, то sin xn= sin pn = 0 при всех n и предел  Если же
xn=2
pn+p/2, то sin xn= sin(2pn+p/2) = sin p/2 = 1 для всех n и следовательно предел . Таким образом,   не существует.

Пример 3.7. Найти предел  .

Решение. Имеем:  . Обозначим t = 5x. При x0 имеем: t0. Применяя формулу (3.10), получим  .

Пример 3.8. Вычислить предел .

Решение. Обозначим y=π-x. Тогда при x→π, y→0.Имеем:

sin 3x = sin 3(p-y) = sin (3p-3y) = sin 3y.

sin 4x = sin 4(p-y) = sin (4p-4y)= - sin 4y.

Предел .

Пример 3.9. Найти предел .

Решение. Обозначим arcsin x=t. Тогда x=sin t и при x→0, t→0. .

Пример 3.10. Найти 1) ; 2) ; 3) .

Решение.

1. Применяя теорему 1 предел разности и предел произведения, находим предел знаменателя:                               .

Предел знаменателя не равен нулю, поэтому, по теореме 1 предел частного, получаем:    .

2. Здесь числитель и знаменатель стремятся к нулю, т.е. имеет место неопределенность вида 0/0. Теорема о пределе частного непосредственно неприменима. Для “раскрытия неопределенности” преобразуем данную функцию. Разделив числитель и знаменатель на x-2, получим при x ≠ 2 равенство:

Так как предел , то, по теореме предел частного, найдем

3. Числитель и знаменатель при x → ∞ являются бесконечно большими функциями. Поэтому теорема предел частного непосредственно не применима. Разделим числитель и знаменатель на x2 и к полученной функции применим теорему предел частного:

.

Пример 3.11. Найти предел .

Решение. Здесь числитель и знаменатель стремятся к нулю:, x-9→0, т.е. имеем неопределенность вида .

Преобразуем данную функцию, умножив числитель и знаменатель на неполный квадрат суммы выражения , получим

.

Пример 3.12. Найти предел .

Решение.  .

 

Автор: Степанов Владимир
О авторе

Виджет для вычисления пределов on-line

В верхнем окошке вместо sin(x)/x введите функцию, предел которой надо найти. В нижнее окошко введите число, к которому стремится х и нажмите кнопку Calcular, получите искомый предел. А если в окне результата нажмете на Show steps в правом верхнем углу, то получите подробное решение.

Правила ввода функций: sqrt(x)- квадратный корень, cbrt(x) - кубический корень, exp(x) - экспонента, ln(x) - натуральный логарифм, sin(x) - синус, cos(x) - косинус, tan(x) - тангенс, cot(x) - котангенс, arcsin(x) - арксинус, arccos(x) - арккосинус, arctan(x) - арктангенс. Знаки: * умножения, / деления, ^ возведение в степень, вместо бесконечности Infinity. Пример: функция вводится так sqrt(tan(x/2)).

 

МЕНЮ

Высшая математика Решение контрольных
Оплата контрольных
Вопросы по Skype
Редактор формул
Лекции
Видео-лекции
Учебники on-line
Скачать учебники
Решатели задач
О математике
Карта сайта

Каталог-Молдова - Ranker, Statistics

Copyright © 2004-2013